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Abstract 

A systematic approach is presented for obtaining 
cylindrical distribution functions (CDF's) of non- 
crystalline polymers which have been oriented by 
extension. The scattering patterns and CDF's are also 
sharpened by the method proposed by Deas and by 
Ruland. Data from atactic poly(methyl methacrylate) 
and polystyrene are analysed by these techniques. The 
methods could also be usefully applied to liquid 
crystals. 

1. Introduction 

There are two reasons for investigating the wide-angle 
X-ray scattering (WAXS) from oriented non- 
crystalline polymers. Firstly, it can aid in the inter- 
pretation of features in the scattering [or in the radial 
distribution function (RDF)] of unoriented polymers, 
by separating peaks into those from scattering within 
chains and those from scattering between chains 
(LoveU, Mitchell & Windle, 1980). Secondly, it may 
show changes in structure that take place when the 
polymer is deformed. In this paper we present a 
systematic approach to the calculation of cylindrical 
distribution functions (CDF's) which assists both these 
aims. 

To investigate the structure of unoriented polymers, 
we have previously adopted the technique of comparing 
scattering calculated for models with that measured 
experimentally (i.e. the comparison is made in 
reciprocal space). Peaks in the experimental scattering 
can be separated into intrachain peaks, which intensify 
towards the extension direction (meridian) when the 
material is deformed, and interchain peaks, which 
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intensify perpendicular to the extension direction 
(towards the equator). This separation cannot easily be 
carried over into the RDF since features in the RDF 
come from more than one peak in the scattering. Hence 
a CDF (or at least its meridional and equatorial 
sections) must be prepared for the deformed materials 
before the RDF can be reliably separated into 
intrachain and interchain features. 

To investigate the structure of oriented polymers, we 
have also made the comparisons in reciprocal space by 
using an azimuthal sharpening technique to improve the 
apparent degree of chain orientation (Lovell & Windle, 
1976, 1977). This gives a pattern similar to a diffuse 
fibre pattern which may be more easily interpreted. 
Although unoriented polymers are frequently analysed 
with RDF's, few workers have prepared CDF's for 
oriented polymers since Norman (1954) first calcu- 
lated the CDF of cellulose. This may be due to the 
difficulty of interpretation since, as we hope to show, 
CDF's are not much more difficult to prepare than 
RDF's. 

We shall first compare the two methods which have 
been used for calculating CDF's and show how 
intermediate results in the procedure can assist in their 
interpretation. The approach is then illustrated with 
results from poly(methyl methacrylate) (PMMA) and 
polystyrene (PS) deformed close to their glass- 
transition temperatures. 

2. Cylindrical distribution functions 

The CDF is the cylindrical average of the normalized 
self-convolution of the electron density, and is defined 
by 

W(r) = 4zcr[p(r) - P0] 
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190 APPLICATION OF CDF'S TO ORIENTED POLYMERS 

The formulae relating it to the two-dimensional 
scattering i(s) depend on the coordinate system used. 
Fig. 1 illustrates both cylindrical and spherical coordin- 
ate systems in reciprocal space. 

2.1. Cylindrical coordinates 

For cylindrical coordinates, the CDF is given by 
(Wrinch, 1946; Alexander, 1969, p. 461) 

2r oooo 

W(R,Z) =--  f f R'i(R',Z')So(RR') 
:it. 

o o 

x cos ( Z Z ' )  dR'  d Z '  (1) 

where Jo is the zero-order Bessel function, 

R = l r l s i n a ,  Z = l r l c o s a  

and i (R ' ,Z ' )  is the reduced scattered intensity. 
This expression has the obvious advantages of 

compactness and of only using one order of Bessel 
function. However, the double integral results in 
considerable computation, although this is not a serious 
drawback with fast computers. Conventional diffrac- 
tion equipment generally operates with a spherical 
coordinate system, so the use of (1) would necessitate 
two-dimensional interpolation. 

The principal problem, having obtained reliable fully 
corrected data, in carrying oat any transformation is 
the limited region of reciprocal space for which 
experimental data can be collected. We have shown 
(Lovell, Mitchell & Windle, 1979) that this termination 
error in a one-dimensional transform can be minimized 
by calculating the transform at points with a spacing 
representing the inherent resolution, and positions 
determined by the form of the reduced intensity at the 
termination point. The two integrals of (1) produce two 
termination errors and, although the transform could be 
calculated at the correct resolution, the large isotropic 
portion of the scattering will cause the value of the 
reduced intensity at the termination point to vary con- 
siderably and hence make termination error difficult to 
avoid. 

2.2. Spherical coordinates 

In spherical coordinates, any cylindrically symmetric 
function with an inversion centre, such as i(s,a), can be 
expanded in a series of Legendre polynomials of even 
order: 

oo 

i(s,a) = ~. i2n(s)Pz,(COS a), (2) 
?1=0  

where 
~r/2 

i2n(s) = (4n + 1) f i(s,a)P2n(cos a) sin a d a  (3) 
0 

and P2n are Legendre polynomials. This expansion is 
analogous to Fourier series for linearly periodic 
functions. 

The CDF can also be expanded in such a series: 

oo 

W ( r , a ) =  Z W2n(r)P2n(cOsa) (4) 
t l = 0  

and Deas (1952) has shown that the coefficients are 
related to those of the scattering by 

GO 2rf WEn(r ) = ( - -1 )" - -  s z i2n(S)jEn(rs) ds, (5) 
7C 

0 

where J2, are spherical Bessel functions. For small 
departures from isotropy, only a few terms are needed 
in the expansion. The first term of (4) will be dominant 
and this is identical with the RDF for isotropic systems. 

The seemingly more involved set of expressions 
derived for spherical coordinates has considerable 
advantages. The most immediate is that the data may 
be collected in this coordinate system. Moreover, only 
single integrals and a single termination are involved 
and hence termination errors may be more easily 
avoided, particularly if (as is usually true) the scattering 
is isotropic at high s values. The only minor drawback 
to the method is the use of higher orders of spherical 
Bessel functions and Legendre polynomials. 

We will now consider in more detail the experi- 
mental procedure, data correction and numerical 
methods for the spherical coordinate system. 

, , g :  y 

~4 

X 

Fig. 1. Cylindrical ( R ' , Z ' )  and spherical (s,a) coordinates in 
reciprocal space, s = 4n sin 0/2. 

3. Experimental procedure 

The symmetrical transmission geometry together with 
the incident beam monochromator were the same as 
used by Pick, Lovell & Windle (1980). The data were 
collected at intervals of 1 o in 20 (Cu Ka radiation) and 
9 o in a. They were smoothed and interpolated on to an 
equal-interval grid with As = O. 1 A -I and Aa = n/80 
rad. (The value of Aa used depends on the degree of 
anisotropy present, i.e. on the highest order of 
Legendre polynomial needed. An interval of n/80 is 
adequate for 2n = 0 to 12.) 
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The data were corrected for absorption and polari- 
zation (Alexander, 1969, pp. 72, 40), and for multiple 
scattering. For the latter correction the method of 
Dwiggins (1972) was used, although for the s range 
used the correction was very small. From the corrected 
data Ieorr(S,a), a n  azimuthally averaged intensity 
function may be calculated: 

n/2  

Iav(S) = f /corr(S,a) Sin O~ da, 
0 

which is then normalized to the independent scattering 
[coherent, ~f2(s) ,  plus Compton, Icomp(s)] from an 
average atom by the method of Krogh-Moe (1956). 
The two-dimensional data can now be normalized with 
the same normalization factor, k, and the independent 
scattering is then subtracted. This removes the large 
intraatomic peak near the origin in the CDF. 

The reduced intensity is then given by 

klcorr(S,a ) - Icomp(S)- Zf2(s)  
i ( s , a )  = 

g2(s) 

where g2(s) is an arbitrary sharpening function (War- 
ren, 1969). gZ(s) = 1 gives an electronic CDF,  whereas 
g2(s) = [Yf(s)]  2 gives an atomic CDF.  There is, 
however, little difference between the two forms of 
CDF beyond 3-4 A, so we have used g2(s) = 1. 

A further refinement might be to subtract the 
scattering from all fixed distances rJk within the chain 
by replacing ~ f 2  with Y j Y k ( ~ f k  sin rjks)/rjks 
(Waring, Lovell, Mitchell & Windle, 1981). This would 
show the interchain scattering more distinctly. 

The transformation of i(s,a) is performed with (2) to 
(5). The Legendre polynomials and spherical Bessel 
functions needed up to 2n = 6 are given in Table 1. 
Higher-order Legendre polynomials were obtained 
from the forward recurrence relation: 

1 
P, (x )  = -  [(2n - 1 ) x P , _ l ( x ) -  ( n -  1)Pn_2(x) ], 

n 

whereas higher-order spherical Bessel functions were 
calculated from the backward recurrence relation: 

2 n + 3  
Jn(X)--  - - J n + l ( x ) - - J n + 2 ( X )  

X 

(Abramowitz & Stegun, 1965). For large values of x, 

1 
J2n(X) - ( --1)n-  sin x 

X 

and therefore all spherical Bessel functions of even 
order are in phase at large x. Hence the integral of (5) 
becomes a Fourier transform for large values of rs: 

2 ~°c, 
W2n(r) -- ' -  | Si2n(S) sin rs ds 

7t d 
0 

and so the termination error for all components may be 
minimized by the sampled transform technique (LoveU, 
Mitchell & Windle, 1979). Sampling the transform at 
the points (2m + 1)n/2Sma x gives an error in WEn 
proportional to 1/r 2 times the gradient of i2n at the 
cut-off point (Smax). For PMMA, this gradient is small 
for i 0 and zero for the higher-order components. Hence 
the error should be small. For PS, the gradient of i 0 at 
Sma x is larger but the anisotropic component has almost 
zero gradient. 

Since (5) is an exact Fourier transform when n = 0, 
Filon's (1929) method was used to calculate W 0 from 
i 0, whereas the other integrals were calculated by 
Simpson's rule. 

4. Azimuthal sharpening 

In our earlier work on oriented polymers, we developed 
an approximate numerical technique for azimuthally 
sharpening the scattering patterns (LoveU & Windle, 
1977). There is, however, an exact solution in terms of 
expansions in Legendre polynomials, which was 
originally suggested by Deas (1952)and rederived by 
Ruland (1977), but the method has not previously been 
applied to experimental data. 

Table 1. Legendre polynomials P , (x )  and spherical Bessel func t ions j , ( x )  o f  even order 

n P,(x) 

0 1 

j,(x) 
sin x 

X 

2 ½(3x 2-  1) - 1 cos x 
X X 2 

(lOS 4s Is nx 1 
4 I(35x 4 - 30x 2 + 3) x 4 x 2 + l x x 2 - 2 cosx 

.10 395 4725 210 
6 ~(231x 6 -  315x 4 + 105x 2-  5) x6 x4 + x2 

sinx 21 (495 60 ) 
1 + 1 cos x 

x x 2 \ - ~  x 2 
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The scattering from a distribution of independent 
molecules (or chain segments) is given by a convolution 
of the orientation distribution for the molecules with the 
scattering from a single molecule. If both the orien- 
tation distribution D(a) and the intramolecular scat- 
tering im(s,a) have cylindrical symmetry, then the 
resultant scattering i(s,a) also has cylindrical sym- 
metry and all three functions can be expanded in 
Legendre series of even order. Moreover, Deas (1952) 
has shown that the coefficients of the three series are 
related by 

2zc 
i2 , ( s ) -  _ _  Dzni~,(s), 

4 n +  1 

where D(a) is normalized such that 

7r/2 1 
f D(a) sin a d a  - . 

0 27r 

Hence, if izn and DE,, are known, we can derive the 
scattering from a single molecule (or chain segment). 

Thus (2) becomes 
oo 

im(s,a) = ~ W2n i2n(S)PEn(COS a) 
n=O 

where the extra weights, w2,, are given by 
1 ~/2  

-- 2re f D(a)P2n(COS a) sin a d a  = (P2n(COS a))  D 
W2n 0 

I 

0 

I 1 I / 

Fig. 2. The effect of truncation of the Legendre series for a 
meridional 6 function. Truncation at four terms: (a) without 
window function 

1 3 
Y = -: Z Pz,(COS a); 

~a=O 

(b) with window function 
3 

2 - 4  y =-~ 1 P2n ( cos  OL). 

n=O 

and (P2n(COS a ) )  o are the orientation parameters of 
D(a) (Ward, 1977). 

The form of D(a) can be derived from the halo with 
the sharpest azimuthal prone. A purely meridional 
halo such as the second or third haloes of PMMA gives 
D(a) directly, but with an equatorial halo such as for 
PS, the weighting factors must be calculated from 

rr/2 

f Ieq(a)P2n(COS a) sin a da 
1 0 

- -  - , ( 6 )  
W2 n n/2 

P2n(0) f Ieq(a) sin a d a  
0 

where P2n(0) = (-1)"[ (2n)!/22"(n!) 2] (Lovell & 
Mitchell, 1981). 

So far, our analysis has used infinite series, whereas 
the data only warrant a small number of terms. This 
truncation of the series leads to loss of resolution and, 
more importantly, can produce spurious features in the 
sharpened pattern. This is seen in curve (a) of Fig. 2 
which shows the effect of truncating the series for a 6 
function at a = 0. Multiplying the coefficients by a 
'window function' can minimize the spurious features 
(curve b of Fig. 2). We have adopted a triangular 
window function of the form (1 - n/N), where N is the 
number of terms used (N = 4 in our case). This is an 
arbitrary choice but it was found in practice to remove 
spurious features without increasing the loss of 
resolution. 

Reduced intensity patterns sharpened by this method 
are presented later in this paper. Since the derivation of 
D(a) from the data makes no allowance for any 
intrinsic azimuthal width due to disorder (Pick, Lovell 
& Windle, 1980), the patterns are to some extent 
over-sharpened. However, the broadening caused by 
use of only a few terms of the series should counteract 
this. 

Since, from (5), each term in the expansion of i(s,a) 
is independently related to each term in the expansion 
of W(R',a) ,  the CDF calculated with the extra weights, 
w2,, is sharpened by the same amount as im(s,a). We 
include such sharpened CDF's  in the results that 
follow. 

An alternative application of this analysis is to 
polymers with rigid chain segments (or to liquid 
crystals) for which the two-dimensional intramolecular 
scattering im(s,a) can be calculated from the known 
molecular conformation. The scattering due to the 
arrangement of the segments can then be derived from 
the experimental scattering and the s-dependent 
weights: 

1 ,~/2 
- -  -- f im(s,a) P2n(COS a) sin a d a .  
w2.(s) o 

The scattering calculated could then be transformed to 
give a CDF for the segment axes. 
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For cylindrical coordinates, Vainshtein (1966) has 
calculated the axial projection of the CDF of molecular 
axes in a liquid crystal from the scattering along the 
equator (i.e. a = 90°). Our method can, of course, give 
a complete CDF. 

5. Calculating CDF's of model single chains 

azimuthally in a similar manner to that described for 
RDF's (Waring, Lovell, Mitchell & Windle, 1981). 
Unlike the methods used for RDF's, an average density 
was not subtracted from the model CDF's and so they 
represent variations in the total electron density, rather 
than the differences as in the experimental reduced 
CDF's. 

The atomic coordinates for a polymer chain are 
generated for a particular chemical configuration by 
specifying the bond lengths, bond angles and torsion 
angles. For a given polymer the bond angles and 
lengths may be considered constant and hence a local 
conformation of a chain can be defined by a set of 
torsion angles. We adopt the same convention for 
measuring bond angles and torsion angles as Lovell & 
Windle (1980). 

Model CDF's are prepared by considering all pairs of 
atoms in the chain and sorting their interatomic vectors 
(weighted with the product of the number of electrons 
in each of the two atoms) into a two-dimensional 
histogram. This histogram contains sharp features 
since only fixed, point atoms are considered, together 
with perfect orientational order. To obtain peak widths 
comparable to those found in experimental CDF's, the 
model histograms are smeared, both radially and 

~-.-...'."~'.,~. 
~ ~ ' ,  , ~ ; ' " ~ \ "  "3 ',:",',, 

" (c) 

•••., (b) 

1 2 3 
slA -~) 

~ ' " " - .  (d) 

i i I 

1 2 3 
s(A -~) 

Fig. 3. Reduced intensity for atactic PMMA oriented by extrusion 
at 373 K. Dashed contours are negative. (a) Total intensity, 
si(s,a); (b) anisotropic component, s[i(s,a) --  i0(s)]; (c) - -  
isotropic, Sio(S ) . . . . . . . . .  meridional section of anisotropic, 
equatorial section of anisotropic; (d) sharpened pattern 

2(4) s 1 --  W2n i2n(S ) P2n(COS a). 

n = 0  

6. Analysis of WAXS data 

6.1. Oriented PMMA 

Fig. 3(a) shows the reduced intensity for atactic 
PMMA which had been oriented by extrusion at 373 K 
to an extension ratio of ~3:1.  The data are presented 
in the form si(s,a) which enhances the higher s region 
and shows the third halo more clearly. The anisotropic 
component of the reduced intensity is shown in Fig. 
3(b). This is obtained by subtracting the isotropic 
component, sio(s ) from si(s,a). Although the second 
and third haloes are purely meridional, the second halo 
shows a tendency to extend parallel to the equator 
rather than circumferentially. The first halo is mainly 
equatorial, although its elliptical shape shows there 
may be other components. Fig. 3(c) shows meridional 
and equatorial sections of the anisotropic scattering 
compared with the isotropic scattering. It can be seen 
that the second halo is the most distinctly anisotropic 
feature and we have previously used this halo to 
measure chain orientation in PMMA (Pick, Lovell & 
Windle, 1980). The anisotropic scattering decreases to 

2 

n=3 

1 2 3 
s (/~-~) 

Fig. 4. Relative contributions of the different i2,(s ) for PMMA. 
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zero by Sma x, as required for minimum termination 
ripple in the CDF.  

So far in the analysis, there has been no need to 
expand the anisotropic component in Legendre poly- 
nomials. This is, however, needed to obtain a sharpened 
scattering pattern. For the PMMA data, we found that 
only the first four terms (n = 0-3) were needed in (2) to 
represent si(s,a) within ~ 2 %  at all points. Fig. 4 shows 
the relative contributions of the different i2n(S). 

The iz(s) term accounts for most of the anisotropic 
scattering. Since P4(cos a) is the first polynomial with 
an off-axis peak, this implies that all the features are 
predominantly meridional or equatorial. More terms in 
the expansion would have little effect on the CDF 
produced but would use slightly more computing time 
and, more importantly, give a greater probability of 
spurious features in the sharpened patterns since the 
weighting factors, WEn, increase rapidly with n. Hence 
we have only used the first four terms in sharpening 
and transforming. 

The azimuthally sharpened scattering pattern is 
shown in Fig. 3(d). We took the orientation distri- 
bution D(a) to be of the form cos 3 a which is a close 
approximation to the azimuthal profile of the third halo 
(the sharpest one). The most distinct features of the 

(b) 

5 10 15 20 

r (h) 

~ (d) 

5 10 15 20 

r (A) 

Fig. 5. Cylindrical distribution function for atactic PMMA. (a) 
Total CDF, rW(r,a); (b) anisotropic component 

r ~ W2n(r ) P2n(cosa); 
n = l  

(c) - -  isotropic, rWo(r) ......... meridional section of amso- 
tropic, - - -  equatorial section of anisotropic; (d) sharpened CDF 

3 

r~,(l--4) WznW2n(r)P2n(c°sa)" 
n = 0  

sharpened pattern are that the first halo apparently has 
two components: one on the equator and one at about 
35 ° to the equator, and that the second and third 
haloes extend parallel to the equator. 

The results of transforming the scattering are shown 
in Fig. 5. The inherent radial resolution in the transform 
is given by 7r/Smax, which is 0.87 A for Sma x = 3.6 A -1. 
Nevertheless, the double peak at 7 and 9 A, which is 
found in RDF's  (Bjornhaug, Ellefsen & Tonnesen, 
1954; Mitchell & Windle, 1980), is well resolved in the 
total CDF (Fig. 5a). The main effect of orientation is to 
produce a broad equatorial peak near 8 A which is 
more clearly seen in the anisotropic component of the 
CDF (Fig. 5b). 

Meridional and equatorial sections of the anisotropic 
component are compared with the isotropic component 
(the RDF) in Fig. 5(c). It can be seen that the broad 
peak at ~ 15 A is also equatorial. For convenience we 
have used straight lines to join the points given by the 
sampled transform. This, together with the small value 
o f  Smax, results in peaks which are more angular than 
would be expected from the reciprocal-space data. 

Since the anisotropic component of the CDF must 
average to zero azimuthally, an equatorial trough gives 
rise to a meridional peak and vice versa. Hence we 
have only taken peaks to be real if they correspond to 
peaks in the isotropic component. The anisotropic 
component corresponds to the simplified CDF (Mil- 
berg, 1963) which suffers from these difficulties in 
interpretation. 

The sharpened CDF is shown in Fig. 5(d). This 
demonstrates the equatorial nature of the 8 and 15 A 
broad peaks more clearly. Also, the 7 and 9 A peaks 
appear to be distinctly off-meridional. 

The CDF's  calculated for two model single chains of 
syndiotactic PMMA are shown in Fig. 6. Model (a) has 
the conformation proposed from analysis of the WAXS 
from unoriented PMMA (Lovell & Windle, 1980). A 
segment of chain in this conformation forms an arc and 
so the segment axis is taken as the tangent to the 
midpoint of the segment. Model (b) is a helix with 

(a) 

r (A) r (A) 

Fig. 6. CDF's for model single chains of syndiotactic PMMA 
(Lovell & Windle, 1980). (a) (10 °, l0 °, -10% -10°)5, 01 = 
ll0 °, 02 = 128°; (b) (20 ° , 20 ° , 20 ° , 20°)5, 01 = 110 °, 02 = 
128 °. 
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approximately 10 monomer units in one turn. It can be 
seen that both models are in quite good agreement with 
the sharpened experimental CDF. 

6.2. Oriented polystyrene 

The scattering from atactic PS oriented at 358 K is 
analysed in Fig. 7. Again there are three haloes. The 
first, though weak, is strongly equatorial whereas the 
second and third are predominantly meridional. 
However, as seen in Figs. 7(b) and (c), the anisotropic 
component only has a small feature corresponding to 
the third halo, the meridional intensification being 
mainly due to a long tail from the second halo. 
Sharpening, with the weights from (6), gives a pattern 
(Fig. 7d) similar to that produced by the iterative 
method (Lovell & Windle, 1976) and confirms our 
earlier findings that the second halo has an off- 
meridional component. 

The meridional peaks beyond s = 2.0 A -1 appear to 
be a genuine feature which is most obvious in i6(S), 

although the magnitude of this component is close to 
the noise level of the data (Fig. 8). 

The unsharpened CDF from PS (Fig. 9a) is 
surprisingly isotropic, showing the small effect that the 
highly oriented first halo has on the transform. The 
features in the CDF are mostly elliptical with distances 
slightly shorter parallel to the extension direction and 
slightly more of them. The intraphenyl distances are 
distinctly equatorial; this is particularly obvious in the 
anisotropic component (Fig. 9b). 

The sharpened CDF (Fig. 9d) is distinctly different 
from the unsharpened one and gives peaks at distances 
near to those expected for the packing of phenyl 
groups. The interpretation of these CDF's is still in 
progress; however in Fig. 10 we show model CDF's for 
single chains in the two most likely conformations. 

n=3 

2 

I I I 

1 2 3 

s (A -1) 
Fig. 8. Relative contributions of the different i2n(s ) for PS. 

~ (b) 

2 3 
s (A-') 

i J i 

(d) 

I 2 3 

s (A-') 

Fig. 7. Reduced intensity for atactic PS oriented by extrusion at 
358 K. (a), (b), (e), (d): see Fig. 3. 

! ~ (a) ~ . .  , .~ (e) 

~ " . . . .  

5 10 15 20 
r (A) 

(d) 

, - , w , 

5 Io 15 20 
r (A) 

Fig. 9. C D F  for atactic PS. (a), (b), (c), (d): see Fig. 5. 
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Model (a) is an all-trans planar zig-zag showing 
particularly good agreement with the experimental 
CDF. Model (b) is a helix with approximately four 
monomer units per turn and it is in much poorer 
agreement. 

We acknowledge support and encouragement from 
Dr A. H. Windle during the course of this work, which 
was funded by the Science Research Council. The 
computer program for calculating spherical Bessel 
functions was supplied by Dr M. R. O'Donohue of the 
University of Cambridge Computing Service. 

7. Conclusions 

1. A systematic approach with spherical coordinates 
can produce reliable and useful CDF's  for an oriented 
polymer. 

2. Azimuthally sharpened scattering patterns and 
CDF's  give more detail which can aid in the 
interpretation. 

3. For atactic poly(methyl methacrylate), the 7 and 
9 A double peak in the RDF is shown to originate from 
intrachain distances but it is superimposed on a 
broader interchain peak at about 8 A. 

4. For atactic polystyrene, the packing of phenyl 
rings seems to correspond to that found in a syndiotac- 
tic planar zig-zag. 

5. These techniques may also be applicable to the 
analysis of WAXS from liquid crystalline systems. 

(a) 

5 10 15 20 5 
r(A) 

(b) 

t' 
10 15 20 

r (A) 

Fig. 10. CDF's for model single chains of syndiotactic PS. (a) 
(tttt) 5, O~ = 112 °, 02= 114°; (b) (ttgg) 5, 0 i = 112 °, O 2 = 114 °. 
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